ar X iv : m at h / 99 02 06 8 v 3 [ m at h . A G ] 1 8 N ov 1 99 9 SPECTRAL CURVES , OPERS AND INTEGRABLE SYSTEMS

نویسنده

  • EDWARD FRENKEL
چکیده

We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spectral data are principal G–bundles on an algebraic curve, equipped with an abelian reduction near one point. The flows on the spectral side come from the action of a Heisenberg subgroup of the loop group. The differential data are flat connections known as opers. The flows on the differential side come from a generalized Drinfeld–Sokolov hierarchy. Our isomorphism between the two sides provides a geometric description of the entire phase space of the hierarchy. It extends the Krichever construction of special algebro–geometric solutions of the nth KdV hierarchy, corresponding to G = SLn. An interesting feature is the appearance of formal spectral curves, replacing the projective spectral curves of the classical approach. The geometry of these (usually singular) curves reflects the fine structure of loop groups, in particular the detailed classification of their Cartan subgroups. To each such curve corresponds a homogeneous space of the loop group and a soliton system. Moreover the flows of the system have interpretations in terms of Jacobians of formal curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 99 02 06 8 v 2 [ m at h . A G ] 6 M ar 1 99 9 SPECTRAL CURVES , OPERS AND INTEGRABLE SYSTEMS

We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...

متن کامل

ar X iv : m at h / 99 02 06 8 v 1 [ m at h . A G ] 1 1 Fe b 19 99 SPECTRAL CURVES , OPERS AND INTEGRABLE SYSTEMS

We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...

متن کامل

N ov 2 00 2 SPECTRAL CURVES , OPERS AND INTEGRABLE SYSTEMS

We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...

متن کامل

2 00 1 Spectral Curves , Opers and Integrable Systems

We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...

متن کامل

Quantization of Soliton Systems and Langlands Duality

We consider the problem of quantization of classical soliton integrable systems, such as the KdV hierarchy, in the framework of a general formalism of Gaudin models associated to affine Kac–Moody algebras. Our experience with the Gaudin models associated to finite-dimensional simple Lie algebras suggests that the common eigenvalues of the mutually commuting quantum Hamiltonians in a model assoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999